Eukaryotic Fatty Acylation Drives Plasma Membrane Targeting and Enhances Function of Several Type III Effector Proteins from Pseudomonas syringae
نویسندگان
چکیده
Bacterial pathogens of plants and animals utilize conserved type III delivery systems to traffic effector proteins into host cells. Plant innate immune systems evolved disease resistance (R) genes to recognize some type III effectors, termed avirulence (Avr) proteins. On disease-susceptible (r) plants, Avr proteins can contribute to pathogen virulence. We demonstrate that several type III effectors from Pseudomonas syringae are targeted to the host plasma membrane and that efficient membrane association enhances function. Efficient localization of three Avr proteins requires consensus myristoylation sites, and Avr proteins can be myristoylated inside the host cell. These prokaryotic type III effectors thus utilize a eukaryote-specific posttranslational modification to access the subcellular compartment where they function.
منابع مشابه
A Family of Bacterial Cysteine Protease Type III Effectors Utilizes Acylation-dependent and -independent Strategies to Localize to Plasma Membranes*
Bacterial phytopathogens employ a type III secretion system to deliver effector proteins into the plant cell to suppress defense pathways; however, the molecular mechanisms and subcellular localization strategies that drive effector function largely remain a mystery. Here, we demonstrate that the plant plasma membrane is the primary site for subcellular localization of the Pseudomonas syringae ...
متن کاملThe HopZ family of Pseudomonas syringae type III effectors require myristoylation for virulence and avirulence functions in Arabidopsis thaliana.
Pseudomonas syringae utilizes the type III secretion system to translocate effector proteins into plant cells, where they can contribute to the pathogen's ability to infect and cause disease. Recognition of these effectors by resistance proteins induces defense responses that typically include a programmed cell death reaction called the hypersensitive response. The YopJ/HopZ family of type III ...
متن کاملFunctional and Computational Analysis of Amino Acid Patterns Predictive of Type III Secretion System Substrates in Pseudomonas syringae
Bacterial type III secretion systems (T3SSs) deliver proteins called effectors into eukaryotic cells. Although N-terminal amino acid sequences are required for translocation, the mechanism of substrate recognition by the T3SS is unknown. Almost all actively deployed T3SS substrates in the plant pathogen Pseudomonas syringae pathovar tomato strain DC3000 possess characteristic patterns, includin...
متن کاملArabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development.
Pseudomonas syringae relies on type III secretion system to deliver effector proteins into the host cell for parasitism. Type III genes are induced in planta, but host factors affecting the induction are poorly understood. Here we report on the identification of an Arabidopsis mutant, att1 (for aberrant induction of type three genes), that greatly enhances the expression of bacterial type III g...
متن کاملSubterfuge and manipulation: type III effector proteins of phytopathogenic bacteria.
Diverse gram-negative bacteria deliver effector proteins into the cells of their eukaryotic hosts using the type III secretion system. Collectively, these type III effector proteins function to optimize the host cell environment for bacterial growth. Type III effector proteins are essential for the virulence of Pseudomonas syringae, Xanthomonas spp., Ralstonia solanacearum and Erwinia species. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 101 شماره
صفحات -
تاریخ انتشار 2000